Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biophys Chem ; 240: 98-106, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30014892

RESUMO

Hydrolysis reaction marks the basis of life yet the mechanism of this crucial biochemical reaction is not completely understood. We recently reported the mechanisms of hydrolysis of nucleoside triphosphate and phosphate monoester. These two reactions hydrolyze P-O-P and P-O-C linkages, respectively. Here, we present the mechanism of hydrolysis of δ-6-phosphogluconolactone, which is an important precursor in the second step of the pentose phosphate pathway. Its hydrolysis requires the cleavage of C-O-C linkage and its mechanism is hitherto unknown. We report three mechanisms of hydrolysis of δ-6-phosphogluconolactone based on density functional computations. In the energetically most favorable mechanism, two water molecules participate in the hydrolysis reaction and the mechanism is sequential, i.e., activation of the attacking water molecule (OH bond breaking) precedes that of the cleavage of the CO bond of the C-O-C linkage. The rate-limiting energy barrier of this mechanism is comparable to the reported experimental free energy barrier. This mechanism has similarities with the mechanism of triphosphate hydrolysis and that of hydrolytic cleavage of DNA in EcoRV enzyme. This two-water sequential hydrolysis mechanism could be the unified mechanism required for the hydrolysis of other hydrolysable species in living cells.


Assuntos
Gluconatos/metabolismo , Via de Pentose Fosfato , Água/metabolismo , Sítios de Ligação , Gluconatos/química , Hidrólise , Modelos Moleculares , Teoria Quântica , Termodinâmica , Água/química
2.
Biophys Chem ; 230: 27-35, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28941815

RESUMO

Hydrolysis of phosphate groups is a crucial reaction in living cells. It involves the breaking of two strong bonds, i.e. the OaH bond of the attacking water molecule, and the POl bond of the substrate (Oa and Ol stand for attacking and leaving oxygen atoms). Mechanism of the hydrolysis reaction can proceed either by a concurrent or a sequential mechanism. In the concurrent mechanism, the breaking of OaH and POl bonds occurs simultaneously, whereas in the sequential mechanism, the OaH and POl bonds break at different stages of the reaction. To understand how protonation affects the mechanism of hydrolysis of phosphate monoester, we have studied the mechanism of hydrolysis of protonated and deprotonated phosphate monoester at M06-2X/6-311+G**//M06-2X/6-31+G*+ZPE level of theory (where ZPE stands for zero point energy). Our calculations show that in both protonated and deprotonated cases, the breaking of the water OaH bond occurs before the breaking of the POl bond. Because the two events are not separated by a stable intermediate, the mechanism can be categorized as semi-concurrent. The overall energy barrier is 41kcalmol-1 in the unprotonated case. Most (5/6th) of this is due to the initial breaking of the water OaH bond. This component is lowered from 34 to 25kcalmol-1 by adding one proton to the phosphate. The rest of the overall energy barrier comes from the subsequent breaking of the POl bond and is not sensitive to protonation. This is consistent with previous findings about the effect of triphosphate protonation on the hydrolysis, where the equivalent protonation (on the γ-phosphate) was seen to lower the barrier of breaking the water OaH bond and to have little effect on the POl bond breaking. Hydrolysis pathways of phosphate monoester with initial breaking of the POl bond could not be found here. This is because the leaving group in phosphate monoester cannot be protonated, unlike in triphosphate hydrolysis, where protonation of the ß- and γ-phosphates had been shown to promote a mechanism where the POl bond breaks before the OaH bond does. We also point out that the charge shift due to POl bond breaking during sequential ATP hydrolysis in bio-molecular motors onsets the week unbinding of hydrolysis product that finally leads to the product release during power stroke.


Assuntos
Trifosfato de Adenosina/metabolismo , Miosinas/metabolismo , Fosfatos/metabolismo , Trifosfato de Adenosina/química , Domínio Catalítico , Ligação de Hidrogênio , Hidrólise , Simulação de Dinâmica Molecular , Miosinas/química , Fosfatos/química , Prótons , Termodinâmica , Água/química
3.
BMC Biochem ; 17(1): 12, 2016 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-27974044

RESUMO

BACKGROUND: Nucleoside triphosphate (NTP) hydrolysis is a key reaction in biology. It involves breaking two very stable bonds (one P-O bond and one O-H bond of water), in either a concurrent or a sequential way. Here, we systematically examine how protonation of the triphosphate affects the mechanism of hydrolysis. RESULTS: The hydrolysis reaction of methyl triphosphate in vacuum is computed with protons in various numbers and position on the three phosphate groups. Protonation is seen to have a strong catalytic effect, with the reaction mechanism depending highly on the protonation pattern. CONCLUSION: This dependence is apparently complicated, but is shown to obey a well-defined set of rules: Protonation of the α- and ß-phosphate groups favors a sequential hydrolysis mechanism, whereas γ-protonation favors a concurrent mechanism, the two effects competing with each other in cases of simultaneous protonation. The rate-limiting step is always the breakup of the water molecule while it attacks the γ-phosphorus, and its barrier is lowered by γ-protonation. This step has significantly lower barriers in the sequential reactions, because the dissociated γ-metaphosphate intermediate (PγO3-) is a much better target for water attack than the un-dissociated γ-phosphate (-PγO42-). The simple chemical logic behind these rules helps to better understand the catalytic strategy used by NTPase enzymes, as illustrated here for the catalytic pocket of myosin. A set of rules was determined that describes how protonating the phosphate groups affects the hydrolysis mechanism of methyl triphosphate: Protonation of the α- and/or ß- phosphate groups promotes a sequential mechanism in which P-O bond breaking precedes the breakup of the attacking water, whereas protonation of the γ-phosphate promotes a concurrent mechanism and lowers the rate-limiting barrier of water breakup. The role played by individual protein residues in the catalytic pocket of triphosphate hydrolysing enzymes can be assigned accordingly.


Assuntos
Hidrolases Anidrido Ácido/metabolismo , Polifosfatos/metabolismo , Hidrolases Anidrido Ácido/química , Trifosfato de Adenosina/metabolismo , Biocatálise , Domínio Catalítico , Hidrólise , Prótons , Termodinâmica , Vácuo
4.
Cytoskeleton (Hoboken) ; 73(11): 643-651, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27583666

RESUMO

The ATPase active site of myosin is located at the core of the motor head. During the Lymn-Taylor actomyosin contractile cycle, small conformational changes in the active site upon ATP binding, ATP hydrolysis and ADP/Pi release are accompanied by large conformational transitions of the motor domains, such as opening and closing of the actin binding cleft and the movement of lever arm. Here, our previous computational studies of myosin are summarized in a comprehensive model at the level of atomic detail. Molecular movies show how the successive domain motions during the ATP induced actin dissociation and the recovery stroke are coupled with the precise positioning of the key catalytic groups in the active site. This leads to a precise timing of the activation of the ATPase function: it allows ATP hydrolysis only after unbinding from actin and the priming of the lever arm, both pre-requisites for an efficient functioning of the motor during the subsequent power stroke. These coupling mechanisms constitute essential principles of every myosin motor, of which the ATP-site can be seen as the central allosteric control unit. © 2016 Wiley Periodicals, Inc.


Assuntos
Trifosfato de Adenosina/química , Simulação por Computador , Modelos Moleculares , Miosinas/química , Actomiosina/química , Actomiosina/metabolismo , Trifosfato de Adenosina/metabolismo , Regulação Alostérica/fisiologia , Animais , Domínio Catalítico , Humanos , Miosinas/metabolismo
5.
Phys Chem Chem Phys ; 18(30): 20219-33, 2016 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-27296627

RESUMO

ATP-driven biomolecular motors utilize the chemical energy obtained from the ATP hydrolysis to perform vital tasks in living cells. Understanding the mechanism of enzyme-catalyzed ATP hydrolysis reaction has substantially progressed lately thanks to combined quantum/classical molecular mechanics (QM/MM) simulations. Here, we present a comparative summary of the most recent QM/MM results for myosin, kinesin and F1-ATPase motors. These completely different motors achieve the acceleration of ATP hydrolysis through a very similar catalytic mechanism. ATP hydrolysis has high activation energy because it involves the breaking of two strong bonds, namely the Pγ-Oßγ bond of ATP and the H-O bond of lytic water. The key to the four-fold decrease in the activation barrier by the three enzymes is that the breaking of the Pγ-Oßγ bond precedes the deprotonation of the lytic water molecule, generating a metaphosphate hydrate complex. The resulting singly charged trigonal planar PγO3(-) metaphosphate is a better electrophilic target for attack by an OaH(-) hydroxyl group. The formation of this OaH(-) is promoted by a strong polarization of the lytic water: in all three proteins, this water is forming a hydrogen-bond with a backbone carbonyl group and interacts with the carboxylate group of glutamate (either directly or via an intercalated water molecule). This favors the shedding of one proton by the attacking water. The abstracted proton is transferred to the γ-phosphate via various proton wires, resulting in a H2PγO4(-)/ADP(3-) product state. This catalytic strategy is so effective that most other nucleotide hydrolyzing enzymes adopt a similar approach, as suggested by their very similar triphosphate binding sites.


Assuntos
Trifosfato de Adenosina , Simulação de Dinâmica Molecular , Animais , Catálise , Humanos , Hidrólise , Miosinas
6.
Curr Opin Struct Biol ; 31: 115-23, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26005996

RESUMO

During its contraction cycle, the myosin motor catalyzes the hydrolysis of ATP. Several combined quantum/classical mechanics (QM/MM) studies of this step have been published, which substantially contributed to our thinking about the catalytic mechanism. The methodological difficulties encountered over the years in the simulation of this complex reaction are now understood: (a) Polarization of the protein peptide groups surrounding the highly charged ATP(4-) cannot be neglected. (b) Some unsuspected protein groups need to be treated QM. (c) Interactions with the γ-phosphate versus the ß-phosphate favor a concurrent versus a sequential mechanism, respectively. Thus, these practical aspects strongly influence the computed mechanism, and should be considered when studying other catalyzed phosphor-ester hydrolysis reactions, such as in ATPases or GTPases.


Assuntos
Adenosina Trifosfatases/metabolismo , Biocatálise , Modelos Moleculares , Miosinas/metabolismo , Teoria Quântica , Adenosina Trifosfatases/química
7.
Proc Natl Acad Sci U S A ; 111(29): E2947-56, 2014 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-25006262

RESUMO

Myosin is a molecular motor responsible for biological motions such as muscle contraction and intracellular cargo transport, for which it hydrolyzes adenosine 5'-triphosphate (ATP). Early steps of the mechanism by which myosin catalyzes ATP hydrolysis have been investigated, but still missing are the structure of the final ADP·inorganic phosphate (Pi) product and the complete pathway leading to it. Here, a comprehensive description of the catalytic strategy of myosin is formulated, based on combined quantum-classical molecular mechanics calculations. A full exploration of catalytic pathways was performed and a final product structure was found that is consistent with all experiments. Molecular movies of the relevant pathways show the different reorganizations of the H-bond network that lead to the final product, whose γ-phosphate is not in the previously reported HPγO4(2-) state, but in the H2PγO4(-) state. The simulations reveal that the catalytic strategy of myosin employs a three-pronged tactic: (i) Stabilization of the γ-phosphate of ATP in a dissociated metaphosphate (PγO3(-)) state. (ii) Polarization of the attacking water molecule, to abstract a proton from that water. (iii) Formation of multiple proton wires in the active site, for efficient transfer of the abstracted proton to various product precursors. The specific role played in this strategy by each of the three loops enclosing ATP is identified unambiguously. It explains how the precise timing of the ATPase activation during the force generating cycle is achieved in myosin. The catalytic strategy described here for myosin is likely to be very similar in most nucleotide hydrolyzing enzymes.


Assuntos
Trifosfato de Adenosina/metabolismo , Miosinas/metabolismo , Biocatálise , Cristalografia por Raios X , Hidrólise , Modelos Moleculares , Miosinas/química , Termodinâmica
8.
J Biol Chem ; 288(49): 35569-80, 2013 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-24165121

RESUMO

It has been proposed recently that ATP hydrolysis in ATPase enzymes proceeds via an initial intermediate in which the dissociated γ-phosphate of ATP is bound in the protein as a metaphosphate (PγO3(-)). A combined quantum/classical analysis of this dissociated nucleotide state inside myosin provides a quantitative understanding of how the enzyme stabilizes this unusual metaphosphate. Indeed, in vacuum, the energy of the ADP(3-) · PγO3(-) · Mg(2+) complex is much higher than that of the undissociated ATP(4-). The protein brings it to a surprisingly low value. Energy decomposition reveals how much each interaction in the protein stabilizes the metaphosphate state; backbone peptides of the P-loop contribute 50% of the stabilization energy, and the side chain of Lys-185(+) contributes 25%. This can be explained by the fact that these groups make strong favorable interactions with the α- and ß-phosphates, thus favoring the charge distribution of the metaphosphate state over that of the ATP state. Further stabilization (16%) is achieved by a hydrogen bond between the backbone C=O of Ser-237 (on loop Switch-1) and a water molecule perfectly positioned to attack the PγO3(-) in the subsequent hydrolysis step. The planar and singly negative PγO3(-) is a much better target for the subsequent nucleophilic attack by a negatively charged OH(-) than the tetrahedral and doubly negative PγO4(2-) group of ATP. Therefore, we argue that the present mechanism of metaphosphate stabilization is common to the large family of nucleotide-hydrolyzing enzymes. Methodologically, this work presents a computational approach that allows us to obtain a truly quantitative conception of enzymatic strategy.


Assuntos
Difosfato de Adenosina/metabolismo , Trifosfato de Adenosina/metabolismo , Miosinas/metabolismo , Domínio Catalítico , Ligação de Hidrogênio , Hidrólise , Cinética , Modelos Moleculares , Proteínas Motores Moleculares/metabolismo , Miosinas/química , Fosfatos/metabolismo , Teoria Quântica , Eletricidade Estática , Especificidade por Substrato , Termodinâmica
9.
Chemistry ; 14(9): 2886-93, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-18232041

RESUMO

Macropolyhedral borane clusters are concave polyhedra constituting fused convex simple polyhedra. They are formally obtained by condensation of simple polyhedral boranes under elimination of between one and four BH(3) or isoelectronic units. The number of eliminated vertexes from simple polyhedra equals the number of shared vertexes in macropolyhedral boranes. For each of the eight classes with general formulae ranging from B(n)H(n-4) to B(n)H(n+10), more than one structure type is possible, differing in the number of shared vertexes and in the types of the two combined cluster fragments. However, only one type of "potential structures" is represented by experimentally known examples and is found to be favored by theoretical calculations. A sophisticated system exists among the favored macropolyhedral borane structures. For each class of macropolyhedral boranes, the number of skeletal electron pairs is directly related to the general formula, the number of shared vertexes and the type of fused cluster fragments. In order to predict the distribution of vertexes among the fused fragments, we propose the concept of preferred fragments. Preferred fragments are those usually present in the thermodynamically most stable structure of a given class of macropolyhedral boranes and are also frequently observed in the experimentally known structures. This allows us to completely predict the cluster framework of the thermodynamically most stable macropolyhedral borane isomers.


Assuntos
Boranos/química , Elétrons , Ligantes , Modelos Moleculares , Conformação Molecular , Terminologia como Assunto , Termodinâmica
10.
Dalton Trans ; (12): 1207-13, 2007 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-17353952

RESUMO

Various two vertex sharing macropolyhedral boranes were computed at the B3LYP/6-311 + G**//B3LYP/6-31G* level of theory to determine the preferred fragments for the thermodynamically most stable isomers. These are nido-10 and arachno-9 vertex fragments for neutral macropolyhedral boranes. The thermodynamically most stable isomers of the nido:nido-, arachno:nido- and arachno:arachno-macropolyhedral borane classes are structurally related to each other by the successive removal of one open face vertex as in the case of simple polyhedral boranes. For these classes, the stabilities of the thermodynamically most stable macropolyhedra relative to isomeric simple polyhedra follow similar trends with respect to the number of skeletal electrons.

11.
Dalton Trans ; (46): 5515-20, 2006 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-17117221

RESUMO

Cluster increments derived for individual cluster fragments reproduce the DFT computed relative stabilities of macropolyhedral boranes usually within +/-6 kcal mol(-1). A simple summation procedure helps to select the best partner for a given cluster fragment in order to construct the thermodynamically most stable macropolyhedral borane. Cluster increments are considerably smaller for nido-cluster fragments with an even number of vertexes than for odd nido-cluster fragments pointing towards high thermodynamic stability of macropolyhedral boranes with even numbered nido-units.

12.
Inorg Chem ; 45(17): 6996-7003, 2006 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-16903759

RESUMO

A comparison of the relative stabilities computed at RB3LYP/6-311+G(d,p)//RB3LYP/6-31G(d)+ZPE of the neutral nido-single clusters and two vertex-sharing macropolyhedral nido:nido-clusters shows single-cluster nido-boranes with up to 11 vertexes to be energetically more favorable than isomeric macropolyhedral boranes. Extra hydrogen atoms at the open face have a significant influence on the relative stabilities of the single cluster nido-boranes vs nido:nido-macropolyhedral boranes. For anionic species, a clear-cut turning point for macropolyhedral preference is shifted to no less than 17 vertexes. Thermodynamically most stable neutral and anionic nido:nido-macropolyhedral boranes usually consist of a nido-10-vertex and a nido-11-vertex unit, respectively. The relative stabilities of isomeric neutral macropolyhedra reflect the patterns exhibited by the sum of thermodynamic stabilities of the individual clusters.

13.
Dalton Trans ; (5): 686-92, 2006 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-16429172

RESUMO

The relative thermodynamic stabilities of ortho-, meta- and para-isomers of 12-vertex closo-heteroboranes and -borates with different p-block heteroatoms were determined using density functional theory. More electronegative (smaller) heteroatoms tend to occupy non-adjacent, whereas less electronegative (larger) heteroatoms tend to occupy adjacent vertices in the thermodynamically most stable closo-diheterododecaborane isomers. The computed relative stabilities agree perfectly with experimental observations. The energy differences of para- and meta- relative to ortho-isomers of 12-vertex closo-heteroboranes generally depend on the extent of electron localization by a given heteroatom and show highly periodic trends, i.e. increase along the period and decrease down the group. The energy penalties for the HetHet structural feature (two heteroatoms adjacent to each other) for the 12-vertex closo-cluster are apparently significantly different from those for the 11-vertex nido-cluster. Reformulating two 11-vertex nido-structural features, i.e. Het(5k)(2) and HetHet, in terms of connection increments along with the additional structural feature HetHet(m) give the relative stabilities of various isomeric 11-vertex nido- as well as 12-vertex closo-heteroboranes and -borates, using one unique set of increments.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...